4.7 Article

Disrupted-In-Schizophrenia-1 Gln31Leu Polymorphism Results in Social Anhedonia Associated with Monoaminergic Imbalance and Reduction of CREB and β-arrestin-1,2 in the Nucleus Accumbens in a Mouse Model of Depression

Journal

NEUROPSYCHOPHARMACOLOGY
Volume 38, Issue 3, Pages 423-436

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/npp.2012.197

Keywords

DISCI; nucleus accumbens; dopamine; CREB; social anhedonia; depression

Funding

  1. CIHR Clinician-Scientist Fellowship

Ask authors/readers for more resources

Disrupted-in-schizophrenia-1 (DISC1) is associated with mental disorders, including major depression. We previously showed that DISC1-Q31L mutant mice have depression-like behaviors and can therefore be used to study neurobiological mechanisms of depression and antidepressant (AD) medication action. First, we found reduced levels of dopamine, serotonin and norepinephrine in the nucleus accumbens (NAC) of DISC1-Q31L mutants. Next, we assessed social-conditioned place preference as a reward-dependent task and the capacity of distinct ADs to correct impaired social behavior in DISC1-Q31L mice. Bupropion, but not fluoxetine or desipramine, was able to correct deficient social facilitation, social reward, and social novelty in DISC1-Q31L mutants, whereas all three ADs were able to improve social motivation and behavioral despair in DISC1-Q31L mutants. Furthermore, we sought to correlate social anhedonia with molecular and cellular features including dendritic spine density, beta-arrestin-1,2, and cAMP-response-element-binding protein (CREB) in the NAC as biomarkers related to depression and the DISC1 pathway. DISC1-Q31L mutants showed reduced levels of beta-arrestin-1,2, CREB, and spine density in the NAC, further supporting the construct validity of the genetic model. Bupropion induced the greatest effect on CREB in DISC1-Q31L mutants, whereas all studied ADs corrected the reduced levels of beta-arrestin-1,2 and modestly ameliorated deficient spine density in this brain region. Overall, we find neurobiological changes accompanying social anhedonia in the NAC of DISC1-Q31L mutant mice, consistent with a role for DISC1 in regulating social reward as an endophenotype of depression. Neuropsychopharmacology (2013) 38, 423-436; doi:10.1038/npp.2012.197; published online 26 September 2012

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available