4.7 Article

Cannabinoids Prevent the Development of Behavioral and Endocrine Alterations in a Rat Model of Intense Stress

Journal

NEUROPSYCHOPHARMACOLOGY
Volume 37, Issue 2, Pages 456-466

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/npp.2011.204

Keywords

CB1 receptors; hypothalamic-pituitary-adrenal (HPA) axis; inhibitory avoidance extinction; single prolonged stress; basolateral amygdala; post-traumatic stress-disorder

Ask authors/readers for more resources

Cannabinoids have recently emerged as a possible treatment of stress-and anxiety-related disorders such as post-traumatic stress disorder (PTSD). Here, we examined whether cannabinoid receptor activation could prevent the effects of traumatic stress on the development of behavioral and neuroendocrine measures in a rat model of PTSD, the single-prolonged stress (SPS) model. Rats were injected with the CB1/CB2 receptor agonist WIN55,212-2 (WIN) systemically or into the basolateral amygdala (BLA) at different time points following SPS exposure and were tested 1 week later for inhibitory avoidance (IA) conditioning and extinction, acoustic startle response (ASR), hypothalamic-pituitary-adrenal (HPA) axis function, and anxiety levels. Exposure to SPS enhanced conditioned avoidance and impaired extinction while enhancing ASR, negative feedback on the HPA axis, and anxiety. WIN (0.5 mg/kg) administered intraperitoneally 2 or 24 h (but not 48 h) after SPS prevented the trauma-induced alterations in IA conditioning and extinction, ASR potentiation, and HPA axis inhibition. WIN microinjected into the BLA (5 mu g/side) prevented SPS-induced alterations in IA and ASR. These effects were blocked by intra-BLA co-administration of the CB1 receptor antagonist AM251 (0.3 ng/side), suggesting the involvement of CB1 receptors. These findings suggest that (i) there may be an optimal time window for intervention treatment with cannabinoids after exposure to a highly stressful event, (ii) some of the preventive effects induced by WIN are mediated by an activation of CB1 receptors in the BLA, and (iii) cannabinoids could serve as a pharmacological treatment of stress-and trauma-related disorders. Neuropsychopharmacology (2012) 37, 456-466; doi:10.1038/npp.2011.204; published online 14 September 2011

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available