4.7 Article

Drug-induced activation of dopamine D1 receptor signaling and inhibition of class I/II histone deacetylase induce chromatin remodeling in reward circuitry and modulate cocaine-related Behaviors

Journal

NEUROPSYCHOPHARMACOLOGY
Volume 33, Issue 12, Pages 2981-2992

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/npp.2008.15

Keywords

epigenetic; addiction; catecholamine; sensitization; chromatin immunoprecipitation; basal ganglia

Funding

  1. NIDA [R01 DA017660]

Ask authors/readers for more resources

Chromatin remodeling, including histone modification, is involved in stimulant-induced gene expression and addiction behavior. To further explore the role of dopamine D(1) receptor signaling, we measured cocaine-related locomotor activity and place preference in mice pretreated for up to 10 days with the D(1) agonist SKF82958 and/or the histone deacetylase inhibitor (HDACi), sodium butyrate. Cotreatment with D(1) agonist and HDACi significantly enhanced cocaine-induced locomotor activity and place preference, in comparison to single-drug regimens. However, butyrate-mediated reward effects were transient and only apparent within 2 days after the last HDACi treatment. These behavioral changes were associated with histone modification changes in striatum and ventral midbrain: (1) a generalized increase in H3 phosphoacetylation in striatal neurons was dependent on activation of D(1) receptors; (2) H3 deacetylation at promoter sequences of tyrosine hydroxylase (Th) and brain-derived neurotrophic factor (Bdnf) in ventral midbrain, together with upregulation of the corresponding gene transcripts after cotreatment with D1 agonist and HDACi. Collectively, these findings imply that D(1) receptor-regulated histone (phospho) acetylation and gene expression in reward circuitry is differentially regulated in a region-specific manner. Given that the combination of D(1) agonist and HDACi enhances cocaine-related sensitization and reward, the therapeutic benefits of D(1) receptor antagonists and histone acetyl-transferase inhibitors (HATi) warrant further investigation in experimental models of stimulant abuse.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available