4.7 Article

Differential Effects of the CRF-R1 Antagonist GSK876008 on Fear-Potentiated, Light- and CRF-Enhanced Startle Suggest Preferential Involvement in Sustained vs Phasic Threat Responses

Journal

NEUROPSYCHOPHARMACOLOGY
Volume 34, Issue 6, Pages 1533-1542

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/npp.2008.210

Keywords

fear; anxiety; startle; amygdala; bed nucleus of the stria terminalis; corticotropin-releasing factor

Funding

  1. National Institute of Mental Health [MH069056, MH47840, MH57250, MH59906]
  2. Science and Technology Center, The Center for Behavioral Neuroscience of the National Science Foundation [IBN-9876754]
  3. Yerkes Base Grant

Ask authors/readers for more resources

The amplitude of the acoustic startle response is increased when elicited in the presence of brief cues that predict shock (fear-potentiated startle) and also when elicited during sustained exposure to bright light (light-enhanced startle). Although both effects are thought to reflect fear or anxiety, their neuroanatomical substrates differ. Although fear-potentiated startle is disrupted by reversible inactivation of the central nucleus of the amygdala (CeA) but not the closely related bed nucleus of the stria terminalis (BNST), light-enhanced startle is disrupted by BNST inactivation but not by CeA inactivation. Intraventricular infusions of corticotropin-releasing factor (CRF) also increase startle (CRF-enhanced startle) and this effect is mediated by CRF receptors within the BNST, with no involvement of the CeA. Together, these observations suggest that CeA- and BNST-dependent fear and anxiety may be differentially sensitive to CRF receptor blockade. We tested this by orally administering the novel, potent, and selective CRF-R1 antagonist GSK876008 to rats before CRF-enhanced, light-enhanced, or fear-potentiated startle testing. GSK876008 disrupted CRF-enhanced startle with a linear dose-response curve, and light-enhanced startle with a U-shaped dose-response curve, but did not disrupt fear-potentiated startle to a visual stimulus at any dose tested, and even augmented the response in some animals. GSK876008 also disrupted shock-related 'baseline' startle increases, which may have reflected context conditioning (shown elsewhere to also be BNST-dependent). Overall, these results suggest that short-duration CeA-dependent threat responses can be pharmacologically dissociated from longer duration BNST-dependent responses in terms of their sensitivity to CRF1 receptor antagonists.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available