4.5 Article

High field structural MRI reveals specific episodic in the subfields of the hippocampus memory correlates

Journal

NEUROPSYCHOLOGIA
Volume 53, Issue -, Pages 233-245

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuropsychologia.2013.11.016

Keywords

Hippocampus; Episodic memory; Structural MRI; Wechsler Memory Scale; Medial temporal lobe; Subfields

Funding

  1. University Hospital Foundation
  2. Canadian Institutes of Health Research (CIHR) [MOP 111049]
  3. CIHR Frederick Banting and Charles Best Canada Graduate Scholarship - Masters Award
  4. Alberta Innovates Health Solutions Graduate Studentship Award

Ask authors/readers for more resources

The involvement of the hippocampus (HC) in episodic memory is well accepted; however it is unclear how each subfield within the HC contributes to memory function. Recent magnetic resonance imaging (MRI) studies suggest differential involvement of hippocampal subfields and subregions in episodic memory. However, most structural MRI studies have examined the HC subfields within a single subregion of the HC and used specialised experimental memory paradigms. The purpose of the present study was to determine the association between volumes of HC subfields throughout the entire HC structure and performance on standard neuropsychological memory tests in a young, healthy population. We recruited 34 healthy participants under the age of 50. MRI data was acquired with a fast spin echo (FSE) sequence yielding a 0.52 x 0.68 x 1.0 mm(3) native resolution. The HC subfields - the cornu ammonis 1-3 (CA), dentate gyrus (DG), and subiculum (SUB) - were segmented manually within three hippocampal subregions using a previously defined protocol. Participants were administered the Wechsler Memory Scale, 4th edition (WMS-IV) to assess performance in episodic memory using verbal (Logical Memory, LM) and visual (Designs, DE; visual-spatial memory, DE-Spatial; visual-content memory, DE-Content) memory subtests. Working memory subtests (Spatial Addition, SA; and Symbol Span, SSP) were included as well. Working memory was not associated with any HC volumes. Volumes of the DG were correlated with verbal memory (LM) and visual-spatial memory (DE-Spatial). Posterior CA volumes correlated with both visual-spatial and visual-object memory (DE-Spatial, DE-Content). In general, anterior subregion volumes (HC head) correlated with verbal memory, while some anterior and many posterior HC subregion volumes (body and tail) correlated with visual memory scores (DE-Spatial, DE-Content). In addition, while verbal memory showed left-lateralized associations with HC volumes, visual memory was associated with HC volumes bilaterally. This the first study to examine the associations between hippocampal subfield volumes across the entire hippocampal formation with performance in a set of standard memory tasks. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available