4.5 Article

Coherent motion processing in autism spectrum disorder (ASD): An fMRI study

Journal

NEUROPSYCHOLOGIA
Volume 48, Issue 6, Pages 1644-1651

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuropsychologia.2010.02.007

Keywords

Autism; Functional MRI; Visual; Motion perception

Funding

  1. AstraZeneca
  2. Eli Lilly
  3. Novartis
  4. Janssen Cilag
  5. Interdisciplinary Centre for Clinical Research [IZKF N68a]

Ask authors/readers for more resources

A deficit in global motion processing caused by a specific dysfunction of the visual dorsal pathway has been suggested to underlie perceptual abnormalities in subjects with autism spectrum disorders (ASD). However, the neural mechanisms associated with abnormal motion processing in ASD remain poorly understood. We investigated brain responses related to the detection of coherent and random motion in 15 male subjects with ASD and 15 age- and IQ-matched healthy controls (aged 13-19 years) using event-related functional magnetic resonance imaging (fMRI). Behaviorally, no significant group differences were observed between subjects with ASD and controls. Neurally, subjects with ASD showed increased brain activation in the left primary visual cortex across all conditions compared with controls. A significant interaction effect between group and condition was observed in the right superior parietal cortex resulting from increased neural activity in the coherent compared with the random motion conditions only in the control group. In addition, neural activity in area V5 was not differentially modulated by specific motion conditions in subjects with ASD. Functional connectivity analyses revealed positive correlations between the primary visual cortex and area V5 within both hemispheres, but no significant between-group differences in functional connectivity patterns along the dorsal stream. The data suggest that motion processing in ASD results in deviant activations in both the lower and higher processing stages of the dorsal pathway. This might reflect differences in the perception of visual stimuli in ASD, which possibly result in impaired integration of motion signals. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available