4.7 Article

Effects of neuropeptide FF system on CB1 and CB2 receptors mediated antinociception in mice

Journal

NEUROPHARMACOLOGY
Volume 62, Issue 2, Pages 855-864

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuropharm.2011.09.013

Keywords

Neuropeptide FF (NPFF); Cannabinoid; WIN55,212-2; Antinociception; Mice

Funding

  1. National Natural Science Foundation of China [20932003, 20902041]
  2. Ministry of Science and Technology [2009ZX09503-017]
  3. Specialized Research Fund for the Doctoral Program in Higher Education Institutions [200807301028]
  4. Fundamental Research Funds for the Central Universities

Ask authors/readers for more resources

It has been demonstrated that opioid and cannabinoid receptor systems can produce similar signal transduction and behavioural effects. Neuropeptide FF (NPFF) belongs to an opioid-modulating peptide family. NPFF has been reported to play important roles in control of pain and analgesia through interactions with the opioid system. We were interested in whether the central and peripheral antinociception of cannabinoids could be influenced by supraspinal NPFF system. The present study examined the effects of NPFF and related peptides on the antinociceptive activities induced by the non-selective cannabinoid receptors agonist WIN55,212-2, given by supraspinal and intraplantar routes. In mice, the central and peripheral antinociception of WIN55,212-2 are mediated by cannabinoid CB1 and CB2 receptors, respectively. Interestingly, central administration of NPFF significantly reduced central and peripheral analgesia of cannabinoids in dose-dependent manners. In contrast, dNPA and NPVF (i.c.v.), two highly selective agonists for NPFF2 and NPFF1 receptors, dose-dependently augmented the antinociception caused by intracerebroventricular and intraplantar injection of WIN55,212-2. Additionally, pretreatment with the NPFF receptors selective antagonist RF9 (i.c.v.) markedly reduced the cannabinoid-modulating activities of NPFF and related peptides in nociceptive assays. These data provide the first evidence for a functional interaction between NPFF and cannabinoid systems, indicating that activation of central NPFF receptors interferes with cannabinoid-mediated central and peripheral antinociception. Intriguingly, the present work may pave the way for a new strategy of using combination treatment of cannabinoid and NPFF agonists for pain management. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available