4.5 Review

Review: The chemokine receptor CXCR3 and its ligands CXCL9, CXCL10 and CXCL11 in neuroimmunity - a tale of conflict and conundrum

Journal

NEUROPATHOLOGY AND APPLIED NEUROBIOLOGY
Volume 36, Issue 5, Pages 368-387

Publisher

WILEY-BLACKWELL
DOI: 10.1111/j.1365-2990.2010.01089.x

Keywords

central nervous system; chemokine; CXCR3; neuroimmunity

Funding

  1. NIH [NS044905]
  2. University of Sydney
  3. Deutsche Forschungsgemeinschaft [HO3298/1-1, Mu17-07/3-1]
  4. University of Munster Medical School, Germany

Ask authors/readers for more resources

The chemokines CXCL9, CXCL10 and CXCL11 (also known as monokine induced by interferon-gamma, interferon-inducible protein-10 and interferon-inducible T cell alpha-chemoattractant, respectively) are structurally and functionally related molecules within the non-ELR CXC chemokine subgroup. These chemokines are generally not detectable in most non-lymphoid tissues under physiological conditions but are strongly induced by cytokines, particularly interferon-gamma, during infection, injury or immunoinflammatory responses. CXCL9, CXCL10 and CXCL11 each bind to a common primary receptor, CXCR3, and possibly to additional receptors. They are best known for their role in leucocyte trafficking, principally acting on activated CD4+ Th1 cells, CD8+ T cells and NK cells. An abundance of data demonstrates that CXCL9, CXCL10 and CXCL11 are produced in many diverse pathologic conditions of the central nervous system. More recent attention has focussed on the function of these chemokines in the central nervous system inflammation. The results of these studies have proven to be sometimes surprising and other times contradictory. Here we discuss the likely more subtle and perhaps divergent roles for these chemokines in the pathogenesis of neuroinflammatory diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available