4.8 Article

Bassoon Specifically Controls Presynaptic P/Q-type Ca2+ Channels via RIM-Binding Protein

Journal

NEURON
Volume 82, Issue 1, Pages 181-194

Publisher

CELL PRESS
DOI: 10.1016/j.neuron.2014.02.012

Keywords

-

Categories

Funding

  1. Deutsche Forschungsgemeinschaft (DFG) [SFB779/B9, GRK 1167, AL1115, FE1335/1, HE3604/2-1]
  2. European Community
  3. State NRW
  4. ERANET NEURON (AMRePACELL)
  5. European Regional Development Fonds
  6. Land Saxony-Anhalt (EFRE/LSA 2007-2013-ZVOH)
  7. BBSRC [BB/J001473/1] Funding Source: UKRI
  8. MRC [G0900613] Funding Source: UKRI
  9. Biotechnology and Biological Sciences Research Council [BB/J001473/1] Funding Source: researchfish
  10. Medical Research Council [G0900613] Funding Source: researchfish

Ask authors/readers for more resources

Voltage-dependent Ca2+ channels (CaVs) represent the principal source of Ca2+ ions that trigger evoked neurotransmitter release from presynaptic boutons. Ca2+ influx is mediated mainly via Ca(V)2.1 (P/Q-type) and Ca(V)2.2 (N-type) channels, which differ in their properties. Their relative contribution to synaptic transmission changes during development and tunes neurotransmission during synaptic plasticity. The mechanism of differential recruitment of Ca(V)2.1 and Ca(V)2.2 to release sites is largely unknown. Here, we show that the presynaptic scaffolding protein Bassoon localizes specifically Ca(V)2.1 to active zones via molecular interaction with the RIM-binding proteins (RBPs). A genetic deletion of Bassoon or an acute interference with Bassoon-RBP interaction reduces synaptic abundance of Ca(V)2.1, weakens P/Q-type Ca2+ current-driven synaptic transmission, and results in higher relative contribution of neurotransmission dependent on Ca(V)2.2. These data establish Bassoon as a major regulator of the molecular composition of the presynaptic neurotransmitter release sites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available