4.8 Article

Essential Role of Presynaptic NMDA Receptors in Activity-Dependent BDNF Secretion and Corticostriatal LTP

Journal

NEURON
Volume 84, Issue 5, Pages 1009-1022

Publisher

CELL PRESS
DOI: 10.1016/j.neuron.2014.10.045

Keywords

-

Categories

Funding

  1. US National Institutes of Health [NIH NS 036999]
  2. CHDI foundation [CHDI A3794]

Ask authors/readers for more resources

Activation of N-methyl-D-aspartate subtype of glutamate receptors (NMDARs) in postsynaptic dendrites is required for long-term potentiation (LTP) of many excitatory synapses, but the role of presynaptic axonal NMDARs in synaptic plasticity remains to be clarified. Here we report that axonal NMDARs play an essential role in LTP induction at mouse corticostriatal synapses by triggering activity-induced presynaptic secretion of brain-derived neurotrophic factor (BDNF). Genetic depletion of either BDNF or the NMDAR subunit GluN1 specifically in cortical axons abolished corticostriatal LTP in response to theta burst stimulation (TBS). Furthermore, functional axonal NMDARs were required for TBS-triggered prolonged axonal Ca2+ elevation and BDNF secretion, supporting the notion that activation of axonal NMDARs induces BDNF secretion via enhancing Ca2+ signals in the presynaptic nerve terminals. These results demonstrate that presynaptic NMDARs are equally important as postsynaptic NMDARs in LTP induction of corticostriatal synapses due to their role in mediating activity-induced presynaptic BDNF secretion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available