4.8 Article

Phase-Locking Precision Is Enhanced by Multiquantal Release at an Auditory Hair Cell Ribbon Synapse

Journal

NEURON
Volume 83, Issue 6, Pages 1404-1417

Publisher

CELL PRESS
DOI: 10.1016/j.neuron.2014.08.027

Keywords

-

Categories

Funding

  1. NIH [K99/R00]
  2. DRF
  3. NIDCD [DC004274]

Ask authors/readers for more resources

Sound-evoked spikes in the auditory nerve can phase-lock with submillisecond precision for prolonged periods of time. However, the synaptic mechanisms that enable this accurate spike firing remain poorly understood. Using paired recordings from adult frog hair cells and their afferent fibers, we show here that during sine-wave stimuli, synaptic failures occur even during strong stimuli. However, exclusion of these failures leads to mean excitatory postsynaptic current (EPSC) amplitudes that are independent of Ca2+ current. Given the intrinsic jitter in spike triggering, evoked synaptic potentials and spikes had surprisingly similar degrees of synchronization to a sine-wave stimulus. This similarity was explained by an unexpected finding: large-amplitude evoked EPSCs have a significantly larger synchronization index than smaller evoked EPSCs. Large EPSCs therefore enhance the precision of spike timing. The hair cells' unique capacity for continuous, large-amplitude, and highly synchronous multiquantal release thus underlies its ability to trigger phase-locked spikes in afferent fibers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available