4.8 Article

Metaplasticity at Single Glutamatergic Synapses

Journal

NEURON
Volume 66, Issue 6, Pages 859-870

Publisher

CELL PRESS
DOI: 10.1016/j.neuron.2010.05.015

Keywords

-

Categories

Funding

  1. NINDS/NIH
  2. NIMH/NIH

Ask authors/readers for more resources

Optimal function of neuronal networks requires interplay between rapid forms of Hebbian plasticity and homeostatic mechanisms that adjust the threshold for plasticity, termed metaplasticity. Numerous forms of rapid synapse plasticity have been examined in detail. However, the rules that govern synaptic metaplasticity are much less clear. Here, we demonstrate a local subunit-specific switch in NMDA receptors that alternately primes or prevents potentiation at single synapses. Prolonged suppression of neurotransmitter release enhances NMDA receptor currents, increases the number of functional NMDA receptors containing NR2B, and augments calcium transients at single dendritic spines. This local switch in NMDA receptors requires spontaneous glutamate release but is independent of action potentials. Moreover, single inactivated synapses exhibit a lower induction threshold for both long-term synaptic potentiation and plasticity-induced spine growth. Thus, spontaneous glutamate release adjusts plasticity threshold at single synapses by local regulation of NMDA receptors, providing a novel spatially delimited form of synaptic metaplasticity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available