4.8 Article

Deregulation of HDAC1 by p25/Cdk5 in Neurotoxicity

Journal

NEURON
Volume 60, Issue 5, Pages 803-817

Publisher

CELL PRESS
DOI: 10.1016/j.neuron.2008.10.015

Keywords

-

Categories

Funding

  1. NIH P01 [AG27916]
  2. NIH/NINDS [R01 NS051383-01]
  3. American Heart Association [05553413]

Ask authors/readers for more resources

Aberrant cell-cycle activity and DNA damage are emerging as important pathological components in various neurodegenerative conditions. However, their underlying mechanisms are poorly understood. Here, we show that deregulation of histone deacetylase 1 (HDAC1) activity by p25/Cdk5 induces aberrant cell-cycle activity and double-strand DNA breaks leading to neurotoxicity. In a transgenic model for neurodegeneration, p25/Cdk5 activity elicited cell-cycle activity and double-strand DNA breaks that preceded neuronal death. Inhibition of HDAC1 activity by p25/Cdk5 was identified as an underlying mechanism for these events, and HDAC1 gain of function provided potent protection against DNA damage and neurotoxicity in cultured neurons and an in vivo model for ischemia. Our findings outline a pathological signaling pathway illustrating the importance of maintaining HDAC1 activity in the adult neuron. This pathway constitutes a molecular link between aberrant cell-cycle activity and DNA damage and is a potential target for therapeutics against diseases and conditions involving neuronal death.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available