4.7 Article

Genetics of epilepsy The testimony of twins in the molecular era

Journal

NEUROLOGY
Volume 83, Issue 12, Pages 1042-1048

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1212/WNL.0000000000000790

Keywords

-

Funding

  1. National Health & Medical Research Council (NHMRC) [628911]
  2. NHMRC [400121, 628952]
  3. Health and Medical Research, Preventive Health, Queensland Department of Health [466671]

Ask authors/readers for more resources

Objective:Analysis of twins with epilepsy to explore the genetic architecture of specific epilepsies, to evaluate the applicability of the 2010 International League Against Epilepsy (ILAE) organization of epilepsy syndromes, and to integrate molecular genetics with phenotypic analyses.Methods:A total of 558 twin pairs suspected to have epilepsy were ascertained from twin registries (69%) or referral (31%). Casewise concordance estimates were calculated for epilepsy syndromes. Epilepsies were then grouped according to the 2010 ILAE organizational scheme. Molecular genetic information was utilized where applicable.Results:Of 558 twin pairs, 418 had confirmed seizures. A total of 534 twin individuals were affected. There were higher twin concordance estimates for monozygotic (MZ) than for dizygotic (DZ) twins for idiopathic generalized epilepsies (MZ = 0.77; DZ = 0.35), genetic epilepsy with febrile seizures plus (MZ = 0.85; DZ = 0.25), and focal epilepsies (MZ = 0.40; DZ = 0.03). Utilizing the 2010 ILAE scheme, the twin data clearly demonstrated genetic influences in the syndromes designated as genetic. Of the 384 tested twin individuals, 10.9% had mutations of large effect in known epilepsy genes or carried validated susceptibility alleles.Conclusions:Twin studies confirm clear genetic influences for specific epilepsies. Analysis of the twin sample using the 2010 ILAE scheme strongly supported the validity of grouping the genetic syndromes together and shows this organizational scheme to be a more flexible and biologically meaningful system than previous classifications. Successful selected molecular testing applied to this cohort is the prelude to future large-scale next-generation sequencing of epilepsy research cohorts. Insights into genetic architecture provided by twin studies provide essential data for optimizing such approaches.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available