4.6 Article

Interference Fracturing: Nonuniform Distributions of Perforation Clusters That Promote Simultaneous Growth of Multiple Hydraulic Fractures

Journal

SPE JOURNAL
Volume 20, Issue 2, Pages 384-395

Publisher

SOC PETROLEUM ENG
DOI: 10.2118/172500-PA

Keywords

-

Funding

  1. Commonwealth Scientific and Industrial Research Organisation (CSIRO) through Division of Earth Science and Resource Engineering
  2. Natural Sciences and Engineering Research Council of Canada
  3. University of Pittsburgh through the Department of Civil and Environmental Engineering, Department of Chemical and Petroleum Engineering
  4. Center for Energy

Ask authors/readers for more resources

One of the important hurdles in horizontal-well stimulation is the generation of hydraulic fractures (HFs) from all perforation clusters within a given stage, despite the challenges posed by stress shadowing and reservoir variability. In this paper, we use a newly developed, fully coupled, parallel-planar 3D HF model to investigate the potential to minimize the negative impact of stress shadowing and thereby to promote more-uniform fracture growth across an array of HFs by adjusting the location of the perforation clusters. In this model, the HFs are assumed to evolve in an array of parallel planes with full 3D stress coupling while the constant fluid influx into the wellbore is dynamically partitioned to each fracture so that the wellbore pressure is the same throughout the array. The model confirms the phenomenon of inner-fracture suppression because of stress shadowing when the perforation clusters are uniformly distributed. Indeed, the localization of the fracture growth to the outer fractures is so dominant that the total fractured area generated by uniform arrays is largely independent of the number of perforation clusters. However, numerical experiments indicate that certain nonuniform cluster spacings promote a profound improvement in the even development of fracture growth. Identifying this effect relies on this new model's ability to capture the full hydrodynamical coupling between the simultaneously evolving HFs in their transition from radial to Perkins-Kern-Nordgren (PKN)-like geometries (Perkins and Kern 1961; Nordgren 1972).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available