4.5 Review

Estrogen receptors' neuroprotective effect against glutamate-induced neurotoxicity

Journal

NEUROLOGICAL SCIENCES
Volume 35, Issue 11, Pages 1657-1662

Publisher

SPRINGER-VERLAG ITALIA SRL
DOI: 10.1007/s10072-014-1937-8

Keywords

Estrogen receptors; Neuroprotection; Glutamate; Neurotoxicity; Alzheimer's disease

Funding

  1. National Natural Science Foundation of China [81371223, 81371437]
  2. Research Fund for the Doctoral Program of Higher Education of China [20122105110010]

Ask authors/readers for more resources

Glutamate is the most abundant excitatory brain neurotransmitter that has important functional significance with respect to neurodegenerative conditions. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer's disease (AD) has been gradually becoming elucidated recently. Excessive release of glutamate induces an increase in intracellular Ca2+ levels, thus triggers a cascade of cellular responses, ultimately leading to neuronal cell death. This type of neuronal damage induced by over-excitation has been proposed to be involved in a number of neuropathological conditions, ranging from acute insults to chronic neurodegenerative disorders. Estrogen could be effective in modulating glutamate-induced neurotoxicity and the protective responsivenesses are mostly estrogen receptors (ERs)-dependent. However, the mechanism underlying estrogen's neuroprotective effect is not fully clarified and is complicated by the presence of several distinct ER types. So a deeper research into the neuroprotection of ERs might be informative about the positive effect that estrogen might have on ageing-related cognitive changes. Extensive studies have indicated the neuroprotective effects of ERs against glutamate-induced neurotoxicity. The purpose of this review is to elucidate ERs' neuroprotective effects against glutamate-induced cytotoxicity and explore new ways to prevent and cure neurotoxicity-associated neurodegenerative disorders.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available