4.2 Review

Potential roles of cell-derived microparticles in ischemic brain disease

Journal

NEUROLOGICAL RESEARCH
Volume 31, Issue 8, Pages 799-806

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1179/016164109X12445505689526

Keywords

Ischema; endothelial microparticles; stroke; platelet; endothelium

Ask authors/readers for more resources

Purpose: The objective of this study is to review the role of cell-derived microparticles in ischemic cerebrovascular diseases. Materials and methods: An extensive PubMed search of literature pertaining to this study was performed in April 2009 using specific keyword search terms related to cell-derived microparticles and ischemic stroke. Some references are not cited here as it is not possible to be all inclusive or due to space limitation. Discussion: Cell-derived microparticles are small membranous vesicles released from the plasma membranes of platelets, leukocytes, red cells and endothelial cells in response to diverse biochemical agents or mechanical stresses. They are the main carriers of circulating tissue factor, the principal initiator of intravascular thrombosis, and are implicated in a variety of thrombotic and inflammatory disorders. This review outlines evidence suggesting that cell-derived microparticles are involved predominantly with microvascular, as opposed to macrovascular, thrombosis. More specifically, cell-derived microparticles may substantially contribute to ischemic brain disease in several settings, as well as to neuroinflammatory conditions. Conclusion: If further work confirms this hypothesis, novel therapeutic strategies for minimizing cell-derived microparticles-mediated ischemia are available or can be developed, as discussed. [Neurol Res 2009; 31: 799-806]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available