4.7 Article

Robust cortical entrainment to the speech envelope relies on the spectro-temporal fine structure

Journal

NEUROIMAGE
Volume 88, Issue -, Pages 41-46

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2013.10.054

Keywords

Envelope entrainment; Auditory cortex; Auditory scene analysis; MEG

Funding

  1. NIH [R01 DC 008342, R01 DC 004786]

Ask authors/readers for more resources

Speech recognition is robust to background noise. One underlying neural mechanism is that the auditory system segregates speech from the listening background and encodes it reliably. Such robust internal representation has been demonstrated in auditory cortex by neural activity entrained to the temporal envelope of speech. A paradox, however, then arises, as the spectro-temporal fine structure rather than the temporal envelope is known to be the major cue to segregate target speech from background noise. Does the reliable cortical entrainment in fact reflect a robust internal synthesis of the attended speech stream rather than direct tracking of the acoustic envelope? Here, we test this hypothesis by degrading the spectro-temporal fine structure while preserving the temporal envelope using vocoders. Magnetoencephalography (MEG) recordings reveal that cortical entrainment to vocoded speech is severely degraded by background noise, in contrast to the robust entrainment to natural speech. Furthermore, cortical entrainment in the delta-band (1-4 Hz) predicts the speech recognition score at the level of individual listeners. These results demonstrate that reliable cortical entrainment to speech relies on the spectro-temporal fine structure, and suggest that cortical entrainment to the speech envelope is not merely a representation of the speech envelope but a coherent representation of multiscale spectro-temporal features that are synchronized to the syllabic and phrasal rhythms of speech. (C) 2013 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available