4.7 Article

Detection of calcifications in vivo and ex vivo after brain injury in rat using SWIFT

Journal

NEUROIMAGE
Volume 61, Issue 4, Pages 761-772

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2012.03.002

Keywords

SWIFT; Phase contrast; Brain calcification; Ultra short echo-time

Funding

  1. NIH [P41 RR008079, P30 NS057091, R21 CA139688, S10 RR023730]

Ask authors/readers for more resources

Calcifications represent one component of pathology in many brain diseases. With MRI, they are most often detected by exploiting negative contrast in magnitude images. Calcifications are more diamagnetic than tissue, leading to a magnetic field disturbance that can be seen in phase MR images. Most phase imaging studies use gradient recalled echo based pulse sequences. Here, the phase component of SWIFT, a virtually zero acquisition delay sequence, was used to detect calcifications ex vivo and in vivo in rat models of status epilepticus and traumatic brain injury. Calcifications were detected in phase and imaginary SWIFT images based on their dipole like magnetic field disturbances. In magnitude SWIFT images, calcifications were distinguished as hypointense and hyperintense. Hypointense calcifications showed large crystallized granules with few surrounding inflammatory cells, while hyperintense calcifications contained small granules with the presence of more inflammatory cells. The size of the calcifications in SWIFT magnitude images correlated with that in Alizarin stained histological sections. Our data indicate that SWIFT is likely to better preserve signal in the proximity of a calcification or other field perturber in comparison to gradient echo due to its short acquisition delay and broad excitation bandwidth. Furthermore, a quantitative description for the phase contrast near dipole magnetic field inhomogeneities for the SWIFT pulse sequence is given. In vivo detection of calcifications provides a tool to probe the progression of pathology in neurodegenerative diseases. In particular, it appears to provide a surrogate marker for inflammatory cells around the calcifications after brain injury. (C) 2012 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available