4.7 Article

Spatial HARDI: Improved visualization of complex white matter architecture with Bayesian spatial regularization

Journal

NEUROIMAGE
Volume 54, Issue 1, Pages 396-409

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2010.07.040

Keywords

-

Funding

  1. NIH [P41 RR 023953, 1R21EB008138]
  2. NATIONAL CENTER FOR RESEARCH RESOURCES [P41RR023953] Funding Source: NIH RePORTER
  3. NATIONAL INSTITUTE OF BIOMEDICAL IMAGING AND BIOENGINEERING [R21EB008138] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Imaging of water diffusion using magnetic resonance imaging has become an important noninvasive method for probing the white matter connectivity of the human brain for scientific and clinical studies. Current methods, such as diffusion tensor imaging (DTI), high angular resolution diffusion imaging (HARDI) such as q-ball imaging, and diffusion spectrum imaging (DSI), are limited by low spatial resolution, long scan times, and low signal-to-noise ratio (SNR). These methods fundamentally perform reconstruction on a voxel-by-voxel level, effectively discarding the natural coherence of the data at different points in space. This paper attempts to overcome these tradeoffs by using spatial information to constrain the reconstruction from raw diffusion MRI data, and thereby improve angular resolution and noise tolerance. Spatial constraints are specified in terms of a prior probability distribution, which is then incorporated in a Bayesian reconstruction formulation. By taking the log of the resulting posterior distribution, optimal Bayesian reconstruction is reduced to a cost minimization problem. The minimization is solved using a new iterative algorithm based on successive least squares quadratic descent. Simulation studies and in vivo results are presented which indicate significant gains in terms of higher angular resolution of diffusion orientation distribution functions, better separation of crossing fibers, and improved reconstruction SNR over the same HARDI method, spherical harmonic q-ball imaging, without spatial regularization. Preliminary data also indicate that the proposed method might be better at maintaining accurate ODFs for smaller numbers of diffusion-weighted acquisition directions (hence faster scans) compared to conventional methods. Possible impacts of this work include improved evaluation of white matter microstructural integrity in regions of crossing fibers and higher spatial and angular resolution for more accurate tractography. (C) 2010 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available