4.7 Article

Analysis of the pyramidal tract in tumor patients using diffusion tensor imaging

Journal

NEUROIMAGE
Volume 50, Issue 1, Pages 27-39

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2009.12.032

Keywords

DTI; DTMRI; Tractography; Fiber tracking; Brain tumor; Pyramidal tract; DTI quantification

Funding

  1. National Spanish grant [TEC-2007-67073]

Ask authors/readers for more resources

In this work, we propose to use fiber tracking in order to analyze and quantify the state of the pyramidal tracts in patients affected by tumors. We introduce a framework that includes an automatic method to obtain the fibers involved in the pyramidal tract of any subject, in order to compare robustly fiber bundles affected by tumors with healthy fiber tracts from control subjects and also to quantify the relative state of degeneration between the fiber tracts in the two hemispheres of the same patient. The comparative analyses proposed in our methodology are based on a new set of measures on the pyramidal tract, which take into account intrinsic properties of the fibers involved in the bundle as well as the similarity with the pyramidal tract of a standard healthy subject, modeled as the average of a set of controls. In order to perform better comparison studies and to take into account more information of the whole bundle, a mapping technique is used to represent the fiber tracts in 2D. Here, we show a set of experiments using 5 tumor patients and 10 control subjects, including pre- and post-operative studies in patients that have been treated with partial or total tumor resection. The results obtained indicate the usefulness of the method showing good overall performance. A reproducibility study using several acquisitions of the same patient is also presented to validate the techniques employed. (C) 2009 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available