4.7 Article

Dynamic control for synchronization of separated cortical areas through thalamic relay

Journal

NEUROIMAGE
Volume 52, Issue 3, Pages 947-955

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2009.11.058

Keywords

Dynamic relaying; Thalamocortical circuit; Zero-lag synchronization; Correlation; Firing pattern; Thalamus; Reticular thalamic nucleus

Funding

  1. European Commission [043309]
  2. MEC (Spain)
  3. Feder [FIS2007-60327 (FISICOS)]

Ask authors/readers for more resources

Binding of features and information which are processed at different cortical areas is generally supposed to be achieved by synchrony despite the non-negligible delays between these areas. In this work we study the dynamics and synchronization properties of a simplified model of the thalamocortical circuit where different cortical areas are interconnected with a certain delay, that is longer than the internal time scale of the neurons. Using this simple model we find that the thalamus could serve as a central subcortical area that is able to generate zero-lag synchrony between distant cortical areas by means of dynamical relaying (Vicente et al., 2008). Our results show that the model circuit is able to generate fast oscillations in frequency ranges of the beta and gamma bands triggered by an external input to the thalamus formed by independent Poisson trains. We propose a control mechanism to turn On and Off the synchronization between cortical areas as a function of the relative rate of the external input fed into dorsal and ventral thalamic neuronal populations. The current results emphasize the hypothesis that the thalamus could control the dynamics of the thalamocortical functional networks enabling two separated cortical areas to be either synchronized (at zero-lag) or unsynchronized. This control may happen at a fast time scale, in agreement with experimental data, and without any need of plasticity or adaptation mechanisms which typically require longer time scales. (C) 2009 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available