4.7 Article

In vivo and in vitro visualization of gene expression dynamics over extensive areas of the brain

Journal

NEUROIMAGE
Volume 44, Issue 4, Pages 1274-1283

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2008.10.046

Keywords

Transgenic mice; Destabilized fluorescent protein; Arc; Cingulate cortex; In vivo imaging; Transcranial imaging

Funding

  1. Japan Society for the Promotion of Science
  2. Ministry of Education, Culture, Sports, Science and Technology

Ask authors/readers for more resources

In vivo monitoring of gene expression using promoter-destabilized fluorescence protein constructs is a powerful method for examining the expression dynamics of immediate-early genes in the brain. However, weak fluorescence signals derived from such constructs have hampered analyses of gene expression over extensive areas of the brain. We succeeded in producing transgenic mice with brains exhibiting high level expression of the reporter gene driven by the Arc gene promoter, which is activated in association with various brain functions (reporter mRNA abundance was near 100-fold greater than endogenous Arc mRNAs). This high expression of the reporter gene enabled us to monitor Arc gene expression dynamics in vivo, over an area that included the whole of the dorsal cerebral cortex. Moreover, we were able to perform three-dimensional analyses of activated regions using paraformaldehyde-fixed brains. In addition to the visual cortex, we found that the cingulate cortex was strongly activated by light stimuli. These mice are extremely useful for the functional analysis of gene expression over extensive areas of the brains in both wild-type mice and mutants with impaired brain function. (C) 2008 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available