4.7 Article

Attentional bias of competitive interactions in neuronal networks of early visual processing in the human brain

Journal

NEUROIMAGE
Volume 41, Issue 3, Pages 1086-1101

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2008.02.040

Keywords

biased competition; human EEG; neuronal networks; spatial dynamics; steady-state visual evoked potential (SSVEP); sustained attention

Ask authors/readers for more resources

Multiple objects in a visual scene compete for neuronal representation. We investigated competitive neuronal dynamics in cortical networks of early visual processing in the human brain. Coloured picture streams flickered at 7.42 Hz, evoking the steady-state visual evoked potential (SSVEP), an electrophysiological response of neuronal populations in early visual areas synchronised by the external pacemaker. While these picture streams were at a fixed location in the upper left and right quadrant, respectively, additional competing picture streams flickering at a different frequency were continuously changing the distance to the stationary streams by slow motion. Analysis of the 7.42 Hz SSVEP amplitude revealed significant amplitude decreases when the competing stimulus was closer than about 4.5 of visual angle. Sources of the SSVEP suppression effect were found in early visual areas of the ventral and dorsal processing streams. Attending the stationary stimulus resulted in no difference in 7.42 Hz SSVEP amplitude regardless of spatial separation to the competing stimulus. Contrary to the predictions of the model, we found co-amplification of the competing stimulus at close spatial proximity accompanied by an increase of an intermodulation frequency, suggesting integrated neuronal processing of target and competing stimuli when both streams are close together. (C) 2008 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available