4.4 Article

Increase in fecal primary bile acids and dysbiosis in patients with diarrhea-predominant irritable bowel syndrome

Journal

NEUROGASTROENTEROLOGY AND MOTILITY
Volume 24, Issue 6, Pages 513-+

Publisher

WILEY
DOI: 10.1111/j.1365-2982.2012.01893.x

Keywords

7 alpha-dehydroxylation; bile acids; diarrhea; dysbiosis; IBS; microbiota

Funding

  1. 'Associtation pour l'Etude des Fonctions Digestive', Asnieres sur seine, France
  2. CEPHALON Inc.
  3. BIOCODEX Inc.

Ask authors/readers for more resources

Background Irritable bowel syndrome (IBS) is a multifactorial disease for which a dysbiosis of the gut microbiota has been described. Bile acids (BA) could play a role as they are endogenous laxatives and are metabolized by gut microbiota. We compared fecal BA profiles and microbiota in healthy subjects (HS) and patients with diarrhea-predominant IBS (IBS-D), and we searched for an association with symptoms. Methods Clinical features and stool samples were collected in IBS-D patients and HS. Fecal BA profiles were generated using HPLC coupled to tandem mass spectrometry. The fecal microbiota composition was assessed by q-PCR targeting dominant bacterial groups and species implicated in BA transformation. Key Results Fourteen IBS-D patients and 18 HS were included. The two groups were comparable in terms of age and sex. The percentage of fecal primary BA was significantly higher in IBS-D patients than in HS, and it was significantly correlated with stool consistency and frequency. Fecal counts of all bacteria, lactobacillus, coccoides, leptum and Faecalibacterium prausnitzii were similar. There was a significant increase of Escherichia coli and a significant decrease of leptum and bifidobacterium in IBS-D patients. Conclusions & Inferences We report an increase of primary BA in the feces of IBS-D patients compared to HS, correlated with stool consistency and frequency. A dysbiosis of different bacterial groups was detected, some of them involved in BA transformation. As the gut microbiota is the exclusive pathway to transform primary into secondary BA, this suggests a functional consequence of dysbiosis, leading to lower BA transformation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available