4.4 Article

Combined administration of secretin and oxytocin inhibits chronic colitis and associated activation of forebrain neurons

Journal

NEUROGASTROENTEROLOGY AND MOTILITY
Volume 22, Issue 6, Pages 654-+

Publisher

WILEY-BLACKWELL
DOI: 10.1111/j.1365-2982.2010.01477.x

Keywords

autism; gut-brain signaling; inflammatory bowel disease; interferon-gamma (IFN gamma); neuropeptides; tumor necrosis factor-alpha (TNF alpha)

Funding

  1. Einhorn Family Charitable Trust [15665]
  2. NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE [R01NS015547, R01NS012969] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Background The pathogenesis of inflammatory bowel disease is unknown; however, the disorder is aggravated by psychological stress and is itself psychologically stressful. Chronic intestinal inflammation, moreover, has been reported to activate forebrain neurons. We tested the hypotheses that the chronically inflamed bowel signals to the brain through the vagi and that administration of a combination of secretin (S) and oxytocin (OT) inhibits this signaling. Methods Three daily enemas containing 2,4,6-trinitrobenzene sulfonic acid (TNBS), which were given to rats produced chronic colitis and ongoing activation of Fos in brain neurons. Key Results Fos was induced in neurons in the paraventricular nucleus of the hypothalamus, basolateral amygdala, central amygdala, and piriform cortex. Subdiaphragmatic vagotomy failed to inhibit this activation of Fos, suggesting that colitis activates forebrain neurons independently of the vagi. When administered intravenously, but not when given intracerebroventricularly, in doses that were individually ineffective, combined S/OT prevented colitis-associated activation of central neurons. Strikingly, S/OT decreased inflammatory infiltrates into the colon and colonic expression of tumor necrosis factor-alpha and interferon-gamma. Conclusions & Inferences These observations suggest that chronic colonic inflammation is ameliorated by the systemic administration of S/OT, which probably explains the parallel ability of systemic S/OT to inhibit the colitis-associated activation of forebrain neurons. It is possible that S and OT, which are endogenous to the colon, might normally combine to restrict the severity of colonic inflammatory responses and that advantage might be taken of this system to develop novel means of treating inflammation-associated intestinal disorders.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available