4.6 Article Proceedings Paper

Emotional state classification from EEG data using machine learning approach

Journal

NEUROCOMPUTING
Volume 129, Issue -, Pages 94-106

Publisher

ELSEVIER
DOI: 10.1016/j.neucom.2013.06.046

Keywords

Emotion classification; Electroencephalograph; Brain-computer interface; Feature reduction; Support vector machine; Manifold learning

Ask authors/readers for more resources

Recently, emotion classification from EEG data has attracted much attention with the rapid development of dry electrode techniques, machine learning algorithms, and various real-world applications of brain-computer interface for normal people. Until now, however, researchers had little understanding of the details of relationship between different emotional states and various EEG features. To improve the accuracy of EEG-based emotion classification and visualize the changes of emotional states with time, this paper systematically compares three kinds of existing EEG features for emotion classification, introduces an efficient feature smoothing method for removing the noise unrelated to emotion task, and proposes a simple approach to tracking the trajectory of emotion changes with manifold learning. To examine the effectiveness of these methods introduced in this paper, we design a movie induction experiment that spontaneously leads subjects to real emotional states and collect an EEG data set of six subjects. From experimental results on our EEG data set, we found that (a) power spectrum feature is superior to other two kinds of features; (b) a linear dynamic system based feature smoothing method can significantly improve emotion classification accuracy; and (c) the trajectory of emotion changes can be visualized by reducing subject-independent features with manifold learning. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available