4.6 Article

A general framework to estimate spatial and spatio-spectral filters for EEG signal classification

Journal

NEUROCOMPUTING
Volume 119, Issue -, Pages 165-174

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.neucom.2013.03.044

Keywords

Brain computer interface; Common spatial patterns; EEG classification; Spatio-spectral filters; Movement-related brain sources

Ask authors/readers for more resources

In this paper, a general framework is proposed for simultaneous design of spatial and spectral filters, which are used to extract discriminant features from EEG signals in Brain Computer Interfacing (BCI) systems. This paper introduces Common Spatial Patterns (CSP) as a step-by-step filter optimization algorithm, and then proposes a generalized type of the CSP which is not limited in a specific optimization constraint. Moreover, it is shown that how this generalization can be extended to a spatio-spectral filter estimation scheme. Then, two specific versions of the generalized CSP are proposed, where a specific target function and optimization constraint are used for estimating the spatial and spectral filters. Unlike the traditional CSP which is not very closely linked to the classification accuracy, the proposed algorithms are able to be more directly aimed at achieving better accuracy and stability. Experimental results obtained from applying the introduced methods on the recorded imagery signals from two datasets, demonstrate considerable improvement in the classification accuracy and stability compared to the standard CSP and other similar methods. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available