4.5 Article

The effect of Ndrg2 expression on astroglial activation

Journal

NEUROCHEMISTRY INTERNATIONAL
Volume 59, Issue 1, Pages 21-27

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuint.2011.03.019

Keywords

Reactive astrocytosis; Neurodegenerative diseases; Cell proliferation; Cell morphology

Funding

  1. Ministry of Education, Science, Technology, Sports and Culture of Japan [19500319]
  2. Grants-in-Aid for Scientific Research [22570151, 19500319] Funding Source: KAKEN

Ask authors/readers for more resources

N-myc downstream-regulated gene 2 (Ndrg2) is a differentiation- and stress-associated molecule predominantly expressed in astrocytes in the central nervous system (CNS). To study the expression and possible role of Ndrg2 in quiescent and activated astrocytes, mice were administrated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropypridine (MPTP), a Parkinson disease (PD)-related neurotoxin which causes both neurodegeneration and glial activation. Immunohistological analysis revealed that Ndrg2 was highly expressed in both types of astrocytes, but less so in astrocytes during the early process of activation. Ndrg2 was also expressed in astrocyte-like cells, but not in neurons, in human brains from PD and Cortico-basal degeneration (CBD) patients. In cultured astrocytes, gene silencing of Ndrg2 significantly enhanced the numbers of 5-bromo-2'-deoxy-uridine (BrdU)-incorporated and proliferating cell nuclear antigen (PCNA)-positive cells, and reduced the length of cell processes and the amount of F-actin. In contrast, adenovirus-mediated overexpression of Ndrg2 significantly reduced the numbers of BrdU-incorporated and PCNA-positive cells, and enhanced the amount of F-actin. Fractionation and immunocytochemical analysis further revealed that Ndrg2 was located in different cellular fractions including the cytosol and cell surface membranes. These results suggest that Ndrg2 may regulate astroglial activation through the suppression of cell proliferation and stabilization of cell morphology. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available