4.5 Article

Chloride channel conductance is required for NGF-induced neurite outgrowth in PC12 cells

Journal

NEUROCHEMISTRY INTERNATIONAL
Volume 56, Issue 5, Pages 663-669

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuint.2010.01.015

Keywords

Chloride channel; Neurite outgrowth; TrkA receptor; NGF; PC12 cells

Funding

  1. Korean Government (MOEHRD) [KRF-2007-531-C00049]

Ask authors/readers for more resources

We have previously shown that in PC12 cells: (1) high extracellular KCl induces moesin phosphorylation, an event which was dependent on chloride channel activation, and (2) NGF induces moesin phosphorylation which is required for neurite outgrowth. These results suggest that NGF-induced intracellular signaling and neurite outgrowth is also mediated by activation of anion channels. Using a patch-clamp technique, we found that NGF treatment increased anionic conductance in PC12 cells, an effect which was completely blocked by NPPB, a chloride channel inhibitor. Also, the NGF-induced moesin phosphorylation was suppressed by NPPB. Additionally, NPPB and SITS, another chloride channel blocker, suppressed NGF-induced TrkA phosphorylation and subsequent PI3K/Akt phosphorylation and Rac1 activation in PC12 cells. Moreover, the chloride channel inhibitors also suppressed the neurite outgrowth and decreased the cell viability in response to long-term treatment of NGF. In summary, our results suggest that chloride ion flux plays an important role in TrkA-mediated signaling pathway during NGF-induced differentiation of PC12 cells. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available