4.5 Article

Neuroprotective and Anti-Apoptotic Propensity of Bacopa monniera Extract Against Sodium Nitroprusside Induced Activation of iNOS, Heat Shock Proteins and Apoptotic Markers in PC12 Cells

Journal

NEUROCHEMICAL RESEARCH
Volume 39, Issue 5, Pages 800-814

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11064-014-1273-7

Keywords

Sodium nitroprusside; Bacopa monniera; PC12 cells; Nitric oxide; Apoptosis; Inducible nitric oxide synthase (iNOS)

Ask authors/readers for more resources

Sodium nitroprusside (SNP) is a widely used nitric oxide (NO) donor, known to exert nitrative stress by up-regulation of inducible nitric oxide synthase (iNOS). N omega-nitro-l-arginine-methyl esther (L-NAME) is a NO inhibitor, which inhibits iNOS expression, is used as positive control. The present study was designed to assess neuroprotective propensity of Bacopa monniera extract (BME) in SNP-induced neuronal damage and oxido-nitrative stress in PC12 cells via modulation of iNOS, heat shock proteins and apoptotic markers. Our results elucidate that pre-treatment of PC12 cells with BME ameliorates the mitochondrial and plasma membrane damage induced by SNP (200 mu M) as evidenced by MTT and LDH assays. BME pre-treatment inhibited NO generation by down regulating iNOS expression. BME replenished the depleted antioxidant status induced by SNP treatment. SNP-induced damage to cellular, nuclear and mitochondrial integrity was also restored by BME, which was confirmed by ROS estimation, comet assay and mitochondrial membrane potential assays respectively. BME pre-treatment efficiently attenuated the SNP-induced apoptotic protein biomarkers such as Bax, Bcl-2, cytochrome-c and caspase-3, which orchestrate the proteolytic damage of the cell. Q-PCR results further elucidated up-regulation of neuronal cell stress markers like HO-1 and iNOS and down-regulation of BDNF upon SNP exposure was attenuated by BME pre-treatment. By considering all these findings, we report that BME protects PC12 cells against SNP-induced toxicity via its free radical scavenging and neuroprotective mechanism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available