4.5 Article

Tat-Collapsin Response Mediator Protein 2 (CRMP2) Increases the Survival of Neurons After NMDA Excitotoxity by Reducing the Cleavage of CRMP2

Journal

NEUROCHEMICAL RESEARCH
Volume 38, Issue 10, Pages 2095-2104

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11064-013-1118-9

Keywords

NMDA; CRMP2; Western blot assay; Hoechst33342-PI staining; Primary hippocampal neurons; N2A cells

Funding

  1. National Natural Science Foundation of China [30871219, 31200895, 31071048]
  2. China 973 Pre-program [2011CB512109]
  3. Ph.D. Programs Foundation of Ministry of Education of China [20091107110001]

Ask authors/readers for more resources

Collapsin response mediator protein 2 (CRMP2) is a brain-specific multifunctional adaptor protein involved in neuronal polarity and axonal guidance. Our previous results showed CRMP2 may be involved in the hypoxic preconditioning and ischemic injury, but the mechanism was not clear. This study explored whether CRMP2 was involved in NMDA-induced neural death, and the possible mechanism. Western blot analysis demonstrated that NMDA reduced the phosphorylation of CRMP2 and inspired the cleavage of CRMP2. Also, it was detected that NMDA treatment did not affect the phosphorylation of CRMP2 in early stage (< 6 h). Over-expression of CRMP2 aggravated the NMDA-induced injury, suggesting the vital role of CRMP2 in excitotoxicity. Tat-CRMP2 was designed to provide the cleavage site of calpain. Thiazolyl blue tetrazolium bromide assay, Hoechst33342/Propidium Iodide staining and Western blot assay showed that Tat-CRMP2 pretreatment increased cell viability compared with the control group against NMDA exposure by decreasing the cleavage of CRMP2. In conclusion, these studies indicated that cleavage of CRMP2 plays an important role involved in the NMDA-induced injury. The cleavage of CRMP2 may be a promising target for excitatory amino acid-related ischemic and hypoxic injury.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available