4.5 Article

Oxygen Glucose Deprivation (OGD)/Re-Oxygenation-Induced In Vitro Neuronal Cell Death Involves Mitochondrial Cyclophilin-D/P53 Signaling Axis

Journal

NEUROCHEMICAL RESEARCH
Volume 38, Issue 4, Pages 705-713

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11064-013-0968-5

Keywords

Oxygen glucose deprivation; Cyclophilin D; p53 and neuronal death

Funding

  1. National Natural Science Foundation of China

Ask authors/readers for more resources

Oxidative stress-induced neuronal cell death requires opening of the mitochondrial permeability transition pore. P53 mitochondrial translocation and association with Cyclophilin D (Cyp-D) is required for the pore opening. Here we tested this signaling axis in oxygen glucose deprivation (OGD)/re-oxygenation-induced in vitro neuronal death. Using mitochondrion immunoprecipitation, we found that p53 translocated to mitochondrion and associated with Cyp-D in SH-SY5Y cells exposed to (OGD)/re-oxygenation. Disruption of this complex by Cyp-D inhibitor Cyclosporine A (CsA), or by Cyp-D or p53 deficiency, significantly inhibited OGD/re-oxygenation-induced apoptosis-independent cell death. Conversely, over-expression of Cyp-D in SH-SY5Y cells caused spontaneous cell death, and these cells were more vulnerable to OGD/re-oxygenation. Finally, CsA or Cyp-D RNAi suppressed OGD/re-oxygenation-induced neuronal cell death in primary cultures. Together, our study suggests that OGD/re-oxygenation-induced in vitro cell death involves a mitochondrial Cyp-D/p53 signaling axis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available