4.3 Article

Tone-detection training enhances spectral integration mediated by intracortical pathways in primary auditory cortex

Journal

NEUROBIOLOGY OF LEARNING AND MEMORY
Volume 101, Issue -, Pages 75-84

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.nlm.2013.01.006

Keywords

Auditory cortex; Rat; Plasticity; Behavior; Current-source density; Thalamocortical; Learning

Funding

  1. NIH [R01 DA12929, P30 DC08369]
  2. China Scholarship Council
  3. UC Irvine Center for the Neurobiology of Learning and Memory

Ask authors/readers for more resources

Auditory-cued behavioral training can alter neural circuits in primary auditory cortex (A1), but the mechanisms and consequences of experience-dependent cortical plasticity are not fully understood. To address this issue, we trained adult rats to detect a 5 kHz target in order to receive a food reward. After 14 days training we identified three locations within A1: (i) the region representing the characteristic frequency (CF) 5 kHz, (ii) a nearby region with CF similar to 10 kHz, and (iii) a more distant region with CF similar to 20 kHz. In order to compare functional connectivity in Al near to, vs. far from, the representation of the target frequency, we placed a 16-channel multiprobe in middle- (similar to 10 kHz) and high- (similar to 20 kHz) CF regions and obtained current-source density (CSD) profiles evoked by a range of tone stimuli (CF +/- 1-3 octaves in quarter-octave steps). Our aim was to construct CSD receptive fields (CSD RFs) in order to determine the laminar and spectral profile of tone-evoked current sinks, and infer changes to thalamocortical and intracortical inputs. Behavioral training altered CSD RFs at the 10 kHz, but not 20 kHz, site relative to CSD RFs in untrained control animals. At the 10 kHz site, current sinks evoked by the target frequency were enhanced in layer 2/3, but the initial current sink in layer 4 was not altered. The results imply training-induced plasticity along intracortical pathways connecting the target representation with nearby cortical regions. Finally, we related behavioral performance (sensitivity index, d') to CSD responses in individual animals, and found a significant correlation between the development of d' over training and the amplitude of the target-evoked current sink in layer 2/3. The results suggest that plasticity along intracortical pathways is important for auditory learning. (C) 2013 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available