4.7 Article

Citron kinase regulates axon growth through a pathway that converges on cofilin downstream of RhoA

Journal

NEUROBIOLOGY OF DISEASE
Volume 41, Issue 2, Pages 421-429

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.nbd.2010.10.012

Keywords

Citron-K; Dorsal root ganglion neurons; CNS; Axon regeneration; siRNA; Neurite outgrowth

Categories

Funding

  1. University of Birmingham
  2. Midlands Neuroscience Teaching and Research Fund
  3. Biotechnology and Biological Sciences Research Council (UK) [G181986]

Ask authors/readers for more resources

Axon regeneration in the adult central nervous system (CNS) is prevented by inhibitory molecules present in myelin, which bind to a receptor complex that leads to downstream RhoGTP activation and axon growth cone collapse. Here, we compared expression of Citron kinase (Citron-K), a target molecule of RhoGTP in non-regenerating dorsal root ganglion neurons (DRGN) after dorsal column (DC) injury, and in regenerating DRGN after either sciatic nerve (SN) injury or preconditioning SN + DC lesion models. We show by microarray that Citron-K mRNA levels in DRGN of a non-regenerating DC injury model were elevated 2-fold compared to those of intact control DRGN. Conversely, Citron-K levels were reduced by 2 and 2.4-fold at 10 days post lesion in the regenerating SN and preconditioning SN + DC lesion models, respectively, compared to levels in control intact DRGN. Western blotting and immunohistochemistry confirmed these observations and localised Citron-K immunostaining to both DRGN and satellite glia. In dissociated, adult rat DRG cell cultures, 80% knockdown of Citron-K, in the presence of inhibitory concentrations of CNS myelin extract (CME), promoted significant disinhibited DRGN neurite outgrowth, only when cells were stimulated with neurotrophic factors. The levels of RhoGTP remained unchanged after Citron-K knockdown in the presence of CME while enhanced cofilin levels correlated with disinhibited DRGN neurite outgrowth. This observation suggests that Citron-K plays a role in axon growth downstream of Rho activation. We conclude that Citron-K regulates actin polymerisation downstream of RhoA and may offer a potentially novel therapeutic approach for promoting CNS axon regeneration. (C) 2010 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available