4.7 Article

A systematic study of brainstem motor nuclei in a mouse model of ALS, the effects of lithium

Journal

NEUROBIOLOGY OF DISEASE
Volume 37, Issue 2, Pages 370-383

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.nbd.2009.10.017

Keywords

Amyotrophic lateral sclerosis; Transgenic G93A mouse; Brainstem motor neurons; Synaptic boutons; Choline acetyl transferase; Lithium

Categories

Ask authors/readers for more resources

Transgenic mice expressing the human superoxide dismutase 1 (SOD-1) mutant at position 93 (G93A) develop a phenotype resembling amyotrophic lateral sclerosis (ALS). In fact, G93A mice develop progressive motor deficits which finally lead to motor palsy and death. This is due to the progressive degeneration of motor neurons in the ventral horn of the spinal cord. Although a similar loss is reported for specific cranial motor nuclei, only a few studies so far investigated degeneration in a few brainstem nuclei. We recently reported that chronic lithium administration delays onset and duration of the disease, while reducing degeneration of spinal motor neuron. In the present study, we extended this investigation to all somatic motor nuclei of the brain stem in the G93A mice and we evaluated whether analogous protective effects induced by lithium in the spinal cord were present at the brain stem level. We found that all motor but the oculomotor nuclei were markedly degenerated in G93A mice, and chronic treatment with lithium significantly attenuated neurodegeneration in the trigeminal, facial, ambiguus, and hypoglossal nuclei. Moreover, in the hypoglossal nucleus, we found that recurrent collaterals were markedly lost in G93A mice while they were rescued by chronic lithium administration. (c) 2009 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available