4.7 Article

Aβ-globulomers are formed independently of the fibril pathway

Journal

NEUROBIOLOGY OF DISEASE
Volume 30, Issue 2, Pages 212-220

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.nbd.2008.01.010

Keywords

Alzheimer's disease; dementia; amyloid beta-protein; oligomers; fibrils; conformational diseases; monocyte

Categories

Ask authors/readers for more resources

Soluble A beta-oligomers are currently discussed as the major causative species for the development of Alzheimer's disease (AD). Consequently, the beta-amyloid cascade hypothesis was extended by A beta-oligomers and their central neuropathogenic role in AD. However, the molecular structure of A beta-oligomers and their relation to amyloid fibril formation remains elusive. Previously we demonstrated that incubation of A beta(1-42) with SDS or fatty acids induces the formation of a homogeneous globular A beta-oligomer termed A beta-globulomer. In this study we investigated the role of A beta-globulomers in the aggregation pathway of A beta-peptide. We used in vitro assays such as thioflavin-T binding and aggregation inhibitors like Congo red to reveal that A beta-peptide in its A beta-globulomer conformation is a structural entity which is independent from amyloid fibril formation. In addition, cellular Alzheimer's-like plaque forming assays show the resistance of A beta-globulomers to deposition as amyloid plaques. We hypothesize that a conformational switch of A beta is decisive for either fibril formation or alternatively and independently A beta-globulomer formation. (c) 2008 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available