4.5 Article

Cortical atrophy and hypoperfusion in a transgenic mouse model of Alzheimer's disease

Journal

NEUROBIOLOGY OF AGING
Volume 34, Issue 6, Pages 1644-1652

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.neurobiolaging.2012.11.022

Keywords

Alzheimer's disease; APP mouse model; Cerebral perfusion; Cortical thickness; Magnetic resonance imaging

Funding

  1. Canadian Institutes of Health Research [MOP-93795]

Ask authors/readers for more resources

Magnetic resonance imaging studies have revealed distinct patterns of cortical atrophy and hypoperfusion in patients with Alzheimer's disease. The relationship between these in vivo imaging measures and the corresponding underlying pathophysiological changes, however, remains elusive. Recently, attention has turned to neuroimaging of mouse models of Alzheimer's disease in which imaging-pathological correlations can be readily performed. In this study, anatomical and arterial spin labeling perfusion magnetic resonance imaging scans of amyloid precursor protein transgenic and age-matched wild-type mice were acquired at 3, 12, and 18 months of age. Fully-automated image processing methods were used to derive quantitative measures of cortical thickness and perfusion. These studies revealed increased regional cortical thickness in young transgenic mice relative to age-matched wild-type mice. However, the transgenic mice generally demonstrated a greater rate of cortical thinning over 15 months. Cortical perfusion was significantly reduced in young transgenic mice in comparison with wild-type mice across most brain regions. Previously unreported regional genotype differences and age-related changes in cortical thickness and cerebral perfusion were identified in amyloid precursor protein transgenic and wild-type mice. (C) 2013 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available