4.5 Article

Declining phosphatases underlie aging-related hyperphosphorylation of neurofilaments

Journal

NEUROBIOLOGY OF AGING
Volume 32, Issue 11, Pages 2016-2029

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.neurobiolaging.2009.12.001

Keywords

Neurofilament; Phosphorylation; Dephosphorylation; Kinases; Phosphatases; Maturation; Aging; RT-97 epitope; Immunoreactivity

Funding

  1. NIA [AG05604]
  2. NIH

Ask authors/readers for more resources

Cytoskeletal protein phosphorylation is frequently altered in neuropathologic states but little is known about changes during normal aging. Here we report that declining protein phosphatase activity, rather than activation of kinases, underlies aging-related neurofilament hyperphosphorylation. Purified PP2A or PP2B dephosphorylated the heavy neurofilament (NFH) subunit or its extensively phorphorylated carboxyl-terminal domain in vitro. In cultured primary hippocampal neurons, inhibiting either phosphatase induced NFH phosphorylation without activating known neurofilament kinases. Neurofilament phosphorylation in the mouse CNS, as reflected by levels of the RT-97 phosphoepitope associated with late axon maturation, more than doubled during the 12-month period after NFH expression plateaued at p21. This was accompanied by declines in levels and activity of PP2A but not PP2B, and no rise in activities of neurofilament kinases (Erk1,2, cdk5 and JNK1,2). Inhibiting PP2A in mice in vivo restored brain RT-97 to levels seen in young mice. Declining PP2A activity, therefore, can account for rising neurofilament phosphorylation in maturing brain, potentially compounding similar changes associated with adult-onset neurodegenerative diseases. (C) 2009 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available