4.6 Article

MicroRNA profiling in pediatric pilocytic astrocytoma reveals biologically relevant targets, including PBX3, NFIB, and METAP2

Journal

NEURO-ONCOLOGY
Volume 15, Issue 1, Pages 69-82

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/neuonc/nos269

Keywords

BRAF; glioma; microRNA; neurofibromatosis; pilocytic astrocytoma

Funding

  1. Childhood Brain Tumor Foundation
  2. Pilocytic/Pilomyxoid Astrocytoma Fund
  3. Pediatric Low Grade Astrocytoma Association
  4. Ian's Friends Foundation
  5. Mayo Clinic CTSA from the NIH [UL1 RR024150]
  6. Mayo Clinic SPORE in Brain Cancer [P50 CA108961]
  7. National Institutes of Health [P30 CA006973]

Ask authors/readers for more resources

Pilocytic astrocytoma (PA) is a World Health Organization grade I glioma that occurs most commonly in children and young adults. Specific genetic alterations have been described in PA, but the pathogenesis remains poorly understood. We studied microRNA (miRNA) alterations in a large cohort of patients with PA. A total of 43 PA, including 35 sporadic grade I PA, 4 neurofibromatosis-1 (NF1)-associated PA, and 4 PA with pilomyxoid features, as well as 5 nonneoplastic brain controls were examined BRAF fusion status was assessed in most cases. RNA was examined using the Agilent Human miRNA Microarray V3 platform. Expression of miRNA subsets was validated using quantitative real-time PCR (qRT-PCR) with Taqman probes. Validation of predicted protein targets was performed on tissue microarrays with the use of immunohistochemistry. We identified a subset of miRNAs that were differentially expressed in pediatric PAs versus normal brain tissue: 13 miRNAs were underexpressed, and 20 miRNAs were overexpressed in tumors. Differences were validated by qRT-PCR in a subset, with mean fold change in tumor versus brain of -17 (miR-124), -15 (miR-129), and 19.8 (miR-21). Searching for predicted protein targets in Targetscan, we identified a number of known and putative oncogenes that were predicted targets of miRNA sets relatively underexpressed in PA. Predicted targets with increased expression at the mRNA and/or protein level in PA included PBX3, METAP2, and NFIB. A unique miRNA profile exists in PA, compared with brain tissue. These miRNAs and their targets may play a role in the pathogenesis of PA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available