4.7 Article

A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection

Journal

NEURAL NETWORKS
Volume 22, Issue 10, Pages 1419-1431

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neunet.2009.04.003

Keywords

Spiking neural networks; Epilepsy; EEG classification; Supervised learning

Ask authors/readers for more resources

Anew Multi-Spiking Neural Network (MuSpiNN) model is presented in which information from one neuron is transmitted to the next in the form of multiple spikes via multiple synapses. A new supervised learning algorithm, dubbed Multi-SpikeProp, is developed for training MuSpiNN. The model and learning algorithm employ the heuristic rules and optimum parameter values presented by the authors in a recent paper that improved the efficiency of the original single-spiking Spiking Neural Network (SNN) model by two orders of magnitude. The classification accuracies of MuSpiNN and Multi-SpikeProp are evaluated using three increasingly more complicated problems: the XOR problem, the Fisher iris classification problem, and the epilepsy and seizure detection (EEG classification) problem. It is observed that MuSpiNN learns the XOR problem in twice the number of epochs compared with the single-spiking SNN model but requires only one-fourth the number of synapses. For the iris and EEG classification problems, a modular architecture is employed to reduce each 3-class classification problem to three 2-class classification problems and improve the classification accuracy. For the complicated EEG classification problem a classification accuracy in the range of 90.7%-94.8% was achieved, which is significantly higher than the 82% classification accuracy obtained using the single-spiking SNN with SpikeProp. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available