4.6 Article

Fuzzy model of dominance emotions in affective computing

Journal

NEURAL COMPUTING & APPLICATIONS
Volume 25, Issue 6, Pages 1467-1477

Publisher

SPRINGER LONDON LTD
DOI: 10.1007/s00521-014-1637-6

Keywords

Fuzzy emotion; Dominance emotion; Multilevel emotion; Human-computer interaction; Affective computing

Ask authors/readers for more resources

To date, most of the human emotion recognition systems are intended to sense the emotions and their dominance individually. This paper discusses a fuzzy model for multilevel affective computing based on the dominance dimensional model of emotions. This model can detect any other possible emotions simultaneously at the time of recognition. One hundred and thirty volunteers from various countries with different cultural backgrounds were selected to record their emotional states. These volunteers have been selected from various races and different geographical locations. Twenty-seven different emotions with their strengths in a scale of 5 were questioned through a survey. Recorded emotions were analyzed with the other possible emotions and their levels of dominance to build the fuzzy model. Then this model was integrated into a fuzzy emotion recognition system using three input devices of mouse, keyboard and the touch screen display. Support vector machine classifier detected the other possible emotions of the users along with the directly sensed emotion. The binary system (non-fuzzy) sensed emotions with an incredible accuracy of 93 %. However, it only could sense limited emotions. By integrating this model, the system was able to detect more possible emotions at a time with slightly lower recognition accuracy of 86 %. The recorded false positive rates of this model for four emotions were measured at 16.7 %. The resulted accuracy and its false positive rate are among the top three accurate human emotion recognition (affective computing) systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available