4.6 Article

Backbreak prediction in the Chadormalu iron mine using artificial neural network

Journal

NEURAL COMPUTING & APPLICATIONS
Volume 23, Issue 3-4, Pages 1101-1107

Publisher

SPRINGER
DOI: 10.1007/s00521-012-1038-7

Keywords

Backbreak; Back propagation; Artificial neural network; Chadormalu iron mine; Coefficient of determination; Sensitivity analysis

Ask authors/readers for more resources

Backbreak is one of the unfavorable blasting results, which can be defined as the unwanted rock breakage behind the last row of blast holes. Blast pattern parameters, like stemming, burden, delay timing, stiffness ratio (bench height/burden) and rock mass conditions (e.g., geo-mechanical properties and joints), are effective in backbreak intensity. Till date, with the exception of some qualitative guidelines, no specific method has been developed for predicting the phenomenon. In this paper, an effort has been made to apply artificial neural networks (ANNs) for predicting backbreak in the blasting operation of the Chadormalu iron mine (Iran). Number of ANN models with different hidden layers and neurons were tried, and it was found that a network with architecture 10-7-7-1 is the optimum model. A comparative study also approved the superiority of the ANN modeling over the conventional regression analysis. Mean square error (MSE), variance account for (VAF) and coefficient of determination (R (2)) between measured and predicted backbreak for the ANN model were calculated and found 89.46 %, 0.714 and 90.02 %, respectively. Also, for the regression model, MSE, VAF and R (2) were computed and found 66.93 %, 1.46 and 68.10 %, respectively. Sensitivity analysis was also carried out to find out the influence of each input parameter on backbreak results, and it was revealed that burden is the most influencing parameter on the backbreak, whereas water content is the least effective parameter in this regard.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available