4.5 Article

Design of continuous attractor networks with monotonic tuning using a symmetry principle

Journal

NEURAL COMPUTATION
Volume 20, Issue 2, Pages 452-485

Publisher

MIT PRESS
DOI: 10.1162/neco.2007.07-06-297

Keywords

-

Funding

  1. NIMH NIH HHS [R01 MH 067991] Funding Source: Medline

Ask authors/readers for more resources

Neurons that sustain elevated firing in the absence of stimuli have been found in many neural systems. In graded persistent activity, neurons can sustain firing at many levels, suggesting a widely found type of network dynamics in which networks can relax to any one of a continuum of stationary states. The reproduction of these findings in model networks of nonlinear neurons has turned out to be nontrivial. A particularly insightful model has been the bump attractor, in which a continuous attractor emerges through an underlying symmetry in the network connectivity matrix. This model, however, cannot account for data in which the persistent firing of neurons is a monotonic-rather than a bell-shaped-function of a stored variable. Here, we show that the symmetry used in the bump attractor network can be employed to create a whole family of continuous attractor networks, including those with monotonic tuning. Our design is based on tuning the external inputs to networks that have a connectivity matrix with Toeplitz symmetry. In particular, we provide a complete analytical solution of a line attractor network with monotonic tuning and show that for many other networks, the numerical tuning of synaptic weights reduces to the computation of a single parameter.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available