3.9 Article

Extracellular YB-1 Blockade in Experimental Nephritis Upregulates Notch-3 Receptor Expression and Signaling

Journal

NEPHRON EXPERIMENTAL NEPHROLOGY
Volume 118, Issue 4, Pages E100-E108

Publisher

KARGER
DOI: 10.1159/000324209

Keywords

Anti-Thy1.1 nephritis; Mesangioproliferative nephritis; Notch signaling; Y-box protein-1

Funding

  1. SFB 542 [A11, C12, C7]
  2. SFB 854 [01, Me1365/7-1]
  3. Medical Faculty at RWTH Aachen University
  4. Else-Kroner-Fresenius-Stiftung

Ask authors/readers for more resources

Background: Notch receptors are involved in kidney development and pathogenesis of inflammatory glomerular diseases. Given the secretion of Y-box (YB) protein-1 following cytokine stimulation and subsequent extracellular association with membrane receptor Notch-3 in vitro, we elucidated functional effects of YB-1 targeting on the Notch-3 signaling pathway. Methods: Rat mesangial cells were challenged with a monoclonal anti-YB-1 antibody (YB-1-mAb) and analyzed for YB-1 and Notch-3 expression. Notch-3 expression in mice with a targeted disruption of one YB-1 allele (YB-1(+/d)) was compared with their wild-type littermates. Furthermore, YB-1-mAb was applied during mesangioproliferative anti-Thy1.1 nephritis, and glomerular Notch-3, Notch target genes and YB-1 expression were analyzed by immunohistochemistry, quantitative real-time PCR and immunoblotting. Results: Upon challenge with YB-1-mAb, rat mesangial cells showed an increased expression of YB-1 and Notch-3 protein. Concordantly, we found a significant upregulation of Notch-3 expression in renal cells of YB-1(+/d) mice. YB-1-mAb treatment in anti-Thy1.1 nephritis resulted in enhanced mesangial Notch-3 expression and differential Notch target gene activation (HES2/Hey-2). Notably, YB-1 mRNA content did not differ between groups; however, glomerular YB-1 protein was significantly increased, suggesting a posttranslational mechanism. Conclusion: Extracellular targeting of YB-1 potently induces glomerular Notch-3 receptor expression, Notch signaling and YB-1 stabilization, most likely via an autoregulatory feedback mechanism. Copyright (C) 2011 S. Karger AG, Basel

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available