4.6 Article

Disturbed flow in radial-cephalic arteriovenous fistulae for haemodialysis: low and oscillating shear stress locates the sites of stenosis

Journal

NEPHROLOGY DIALYSIS TRANSPLANTATION
Volume 27, Issue 1, Pages 358-368

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/ndt/gfr342

Keywords

arteriovenous fistula; computational fluid dynamics (CFD); intimal hyperplasia; vascular access; wall shear stress

Funding

  1. European Commission [224390]

Ask authors/readers for more resources

Background. Despite recent clinical and technological advancements, the vascular access (VA) for haemodialysis still has significant early failure rates after arteriovenous fistula (AVF) creation. VA failure is mainly related to the haemodynamic conditions that trigger the phenomena of vascular wall disease such as intimal hyperplasia (IH) or atherosclerosis. Methods. We performed transient computational fluid dynamics simulations within idealized three-dimensional models of 'end-to-side' and 'end-to-end' radio-cephalic anastomosis, using non-Newtonian blood and previously measured flows and division ratio in subjects requiring primary access procedure as boundary conditions. Results. The numerical simulations allowed full characterization of blood flow inside the AVF and of patterns of haemodynamic shear stress, known to be the major determinant of vascular remodelling and disease. Wall shear stress was low and oscillating in zones where flow stagnation occurs on the artery floor and on the inner wall of the juxta-anastomotic vein. Conclusions. Zones of low and oscillatory shear stress were located in the same sites where luminal reduction was documented in previous experimental studies on sites stenosis distribution in AVF. We conclude that even when exposed to high flow rates, there are spot regions along the AVF exposed to athero-prone shear stress that favour vessel stenosis by triggering IH.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available