4.6 Article

Eradication of microorganisms embedded in biofilm by an ethanol-based catheter lock solution

Journal

NEPHROLOGY DIALYSIS TRANSPLANTATION
Volume 24, Issue 10, Pages 3204-3209

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/ndt/gfp187

Keywords

biofilm; catheter; infection; lock solution

Funding

  1. Centre d'Imagerie Cellulaire Sante, Universite d'Auvergne

Ask authors/readers for more resources

Background. Interdialytic locking of catheters with antimicrobial agents is frequently used for preventing catheter-related infections, often associated with biofilm formation. We determined the bactericidal effect of 60% ethanol (ETOH) versus a 46.7% trisodium citrate (TSC) solution on biofilm embedded in silicone catheters. Methods. Four- and 24-h biofilms of Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, Klebsiella pneumoniae and Candida albicans established in a micro-fermentor were exposed to ETOH and TSC for up to 24 h and the number of remaining viable microorganisms was determined. Results. ETOH 60% was significantly more effective than 46.7% TSC in rapidly eradicating sessile cells from all microorganisms tested. A 20-min ETOH 60% treatment completely eradicated the Gram-negative bacilli and C. albicans biofilms, which initially contained up to 108 and 105 cells, respectively. Gram-positive cocci biofilms only showed a significant 2.6-4.3 log reduction in the initial viable counts after 20 min of ETOH 60% treatment, with eradication occurring after 30 min. Confocal laser scanning microscopy observation of ETOH-treated biofilm showed sparse cells with respiratory activity. TSC 46.7% eradicated none of the tested microorganisms. In contrast, ETOH 60% totally eradicated planktonic cells, whereas TSC had significant bactericidal activity against K. pneumoniae, P. aeruginosa and C. albicans after 20 min, 1 and 24 h, respectively, but none on the Staphylococcus species. Conclusions. This in vitro study demonstrates the superior antimicrobial activity of ETOH 60% in contrast to TSC 46.7% in eradicating biofilm formed on a silicon catheter. Hence, ethanol-based solution shows promise as a catheter lock solution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available