4.6 Article

Sequential phase transformation of propeller-like C3-symmetric liquid crystals from a helical to ordered to disordered hexagonal columnar structure

Journal

SOFT MATTER
Volume 11, Issue 1, Pages 94-101

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4sm02004a

Keywords

-

Funding

  1. Dankook University

Ask authors/readers for more resources

In this paper, we report thermally induced intercolumnar phase transitions of C-3-symmetric liquid crystals (LCs) bearing a triazole-based propeller-like aromatic mesogen. Since the constituting aromatic rings are conjugated through rotatable single bonds, the mesogenic shape is tuneable depending on the degree of conformational motion. Molecule 1 with ninefold octyl peripheries shows a hexagonal columnar liquid crystalline phase transition from ordered mesogenic stacking to disordered mesogenic stacking upon heating. On the other hand, molecule 2 with sixfold octyl peripheries displays a helical hexagonal columnar phase with the P6/mmm space group at ambient temperature as well as the ordered and disordered hexagonal columnar phases at higher temperatures. The intracolumnar helical order can be understood by an interdigitated stacking of the propeller-like mesogens along the columnar axis and the optimized space-filling. Notably, all the intercolumnar phase transformations in this study are revealed as second-order transitions. The thermodynamic nature agrees well with the fact that the conformational motions of the C-3-symmetric aromatic mesogen change abruptly with each columnar transition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available