4.7 Article

Ultrasonic air-coupled testing of square-shape CFRP composite rods by means of guided waves

Journal

NDT & E INTERNATIONAL
Volume 44, Issue 7, Pages 645-654

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ndteint.2011.07.001

Keywords

CFRP rod; Multiple delaminations; Air-coupled NDT; Guided ultrasonic waves

Ask authors/readers for more resources

In aerospace industry, one of the most important parts of gliders and motor-gliders is a lightweight longeron reinforcement made of carbon fibre reinforced plastics (CFRP) rods, known as Graphlite SM315 composite. During manufacturing, the rods as constructional elements are glued together in epoxy-filled matrix in order to build the arbitrary spar profile. The defects present in single rods such as breakage of fibres, multiple delaminations due to the lack of bonding between fibres and reduction in density affect essentially the strength and the fail-safety of the overall construction. The aim of the present work is to investigate the effects (transmission, reflection, scattering and mode conversion) of guided waves propagation along a square-shape CFRP rod in the case of contactless excitation/reception and interaction with region of multiple delaminations applying the numerical model and performing experiments. The square-shape CFRP composite rods possessing internal artificial delamination type defects have been investigated by numerical modelling and experiments employing the developed air-coupled technique (pitch-catch set-up) for cases of conventional transmission and advanced back-scattering configurations. Numerical predictions of guided wave interaction with a multiple delamination type defect in a CFRP composite rod have been made and the interaction mechanism explained. It is possible to conclude, that the actual sizes of the internal defects have been clearly detected using reception of the back-scattered waves over the edges of the defective regions only. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available