4.7 Article

Radar survey of concrete elements: Effect of concrete properties on propagation velocity and time zero

Journal

NDT & E INTERNATIONAL
Volume 41, Issue 3, Pages 198-207

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ndteint.2007.10.001

Keywords

radar; time zero; propagation velocity; delay measurement; concrete

Ask authors/readers for more resources

Ground-penetrating radar (GPR) is widely used to detect and locate steel reinforcement in concrete. However, there are many factors which need to be considered, if accurate depth measurements are to be made. Knowledge of the reference time zero and the propagation velocity of radar waves is essential. This paper presents experimental results on the effect of the physical properties of concrete on the time zero and the propagation velocity of both direct and reflected waves radiated by a ground-coupled antenna. Laboratory experiments were conducted on reinforced concrete slabs and involved various porosities, water contents and depths of steel reinforcing bars. The results of this research demonstrate clearly that the direct wave, which is radiated laterally, propagates at the same velocity as the reflected waves. The implication of such a result is that the direct wave time position is not constant and is affected by the concrete porosity and water content. Therefore, in cases where the direct wave is used as the time reference, this paper proposes to improve delay measurements by applying a delay correction corresponding to the travel time of the direct wave and taking account of the transmitter-receiver offset and of the propagation velocity of radar waves in concrete. (C) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available